The remarkable genetic diversity of vector-borne pathogens allows for the establishment of superinfection in the mammalian host. To have a long-term impact on population strain structure, the introduced strains must also be transmitted by a vector population that has been exposed to the existing primary strain. The sequential exposure of the vector to multiple strains frequently prevents establishment of the second strain, a phenomenon termed superinfection exclusion. As a consequence, superinfection exclusion may greatly limit genetic diversity in the host population, which is difficult to reconcile with the high degree of genetic diversity maintained among vector-borne pathogens. Using Anaplasma marginale, a tick-borne bacterial pathogen of ruminants, we hypothesized that superinfection exclusion is temporally dependent and that longer intervals between strain exposures allow successful acquisition and transmission of a superinfecting strain. To test this hypothesis, we sequentially exposed Dermacentor andersoni ticks to two readily tick-transmissible strains of A. marginale. The tick feedings were either immediately sequential or 28 days apart. Ticks were allowed to transmission feed and were individually assessed to determine if they were infected with one or both strains. The second strain was excluded from the tick when the exposure interval was brief but not when it was prolonged. Midguts and salivary glands of individual ticks were superinfected and transmission of both strains occurred only when the exposure interval was prolonged. These findings indicate that superinfection exclusion is temporally dependent, which helps to account for the differences in pathogen strain structure in tropical compared to temperate regions.
IMPORTANCEMany vector-borne pathogens have marked genetic diversity, which influences pathogen traits such as transmissibility and virulence. The most successful strains are those that are preferentially transmitted by the vector. However, the factors that determine successful transmission of a particular strain are unknown. In the case of intracellular, bacterial, tick-borne pathogens, one potential factor is superinfection exclusion, in which colonization of ticks by the first strain of a pathogen it encounters prevents the transmission of a second strain. Using A. marginale, the most prevalent tick-borne pathogen of cattle worldwide, and its natural tick vector, we determined that superinfection exclusion occurs when the time between exposures to two strains is brief but not when it is prolonged. These findings suggest that superinfection exclusion may influence strain transmission in temperate regions, where tick activity is limited by season, but not in tropical regions, where ticks are active for long periods.