Bipolar Disorders. 2020;22:334-355. wileyonlinelibrary.com/journal/bdi
| INTRODUC TI ONBipolar disorder (BD) is a severe chronic mood disorder affecting more than 1% of the general adult population 1 and is associated with a high socio-economic burden. 2,3 Many challenges persist regarding BD management and growing evidence suggests that BD is under-recognized in clinical practice. Currently, the establishment of the diagnosis is solely based on clinical assessments. Therefore, the Abstract Objectives: The existence of anatomofunctional brain abnormalities in bipolar disorder (BD) is now well established by magnetic resonance imaging (MRI) studies. To create diagnostic and prognostic tools, as well as identifying biologically valid subtypes of BD, research has recently turned towards the use of machine learning (ML) techniques. We assessed both supervised ML and unsupervised ML studies in BD to evaluate their robustness, reproducibility and the potential need for improvement.
Method:We systematically searched for studies using ML algorithms based on MRI data of patients with BD until February 2019.
Result:We identified 47 studies, 45 using supervised ML techniques and 2 including unsupervised ML analyses. Among supervised studies, 43 focused on diagnostic classification. The reported accuracies for classification of BD ranged between (a) 57% and 100%, for BD vs healthy controls; (b) 49.5% and 93.1% for BD vs patients with major depressive disorder; and (c) 50% and 96.2% for BD vs patients with schizophrenia. Reported accuracies for discriminating subjects genetically at risk for BD (either from control or from patients with BD) ranged between 64.3% and 88.93%.
Conclusions:Although there are strong methodological limitations in previous studies and an important need for replication in large multicentric samples, the conclusions of our review bring hope of future computer-aided diagnosis of BD and pave the way for other applications, such as treatment response prediction. To reinforce the reliability of future results we provide methodological suggestions for good practice in conducting and reporting MRI-based ML studies in BD.
K E Y W O R D Sbipolar disorders, machine learning, magnetic resonance imaging, precision medicine | 335 CLAUDE Et AL.