Encyclopedia of Nanotechnology 2016
DOI: 10.1007/978-94-007-6178-0_101014-1
|View full text |Cite
|
Sign up to set email alerts
|

Anchor Loss in MEMS/NEMS

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 12 publications
0
1
0
Order By: Relevance
“…We expect that non-fluid losses, both those due to clamping losses and thermoelastic damping, could be significantly reduced in future CNT-M resonator designs through the use of narrow anchors placed at vibrational antinodes. 19 There is also significant room to reduce fluid damping further through the design and fabrication of CNT-M cantilevers with different geometries including thicker cantilevers. Whereas these cantilevers were grown to heights of ∼200 μm, the CNT-M process has recently been used to fabricate structures with growth heights >1 mm.…”
Section: Resultsmentioning
confidence: 99%
“…We expect that non-fluid losses, both those due to clamping losses and thermoelastic damping, could be significantly reduced in future CNT-M resonator designs through the use of narrow anchors placed at vibrational antinodes. 19 There is also significant room to reduce fluid damping further through the design and fabrication of CNT-M cantilevers with different geometries including thicker cantilevers. Whereas these cantilevers were grown to heights of ∼200 μm, the CNT-M process has recently been used to fabricate structures with growth heights >1 mm.…”
Section: Resultsmentioning
confidence: 99%