Cu/CeO2 catalysts are highly active for the low-temperature water-gas shift-a core reaction in syngas chemistry for tuning H2/CO/CO2 proportions in feed-streams-but direct identification and a quantitative description of the active sites remains challenging. Here, we report that the active copper clusters consist of a bottom layer of mainly Cu + atoms bonded on the oxygen vacancies of ceria, in a form of Cu +-Ov-Ce 3+ , and a top layer of Cu 0 atoms coordinated with the underlying Cu + atoms. This atomic structure model is based on directly observing copper clusters dispersed on ceria by a combination of scanning transmission electron microscopy and electron energy loss spectroscopy, in situ probing the interfacial copper-ceria bonding environment by infrared spectroscopy, and rationalization by density functional theory calculations. These results, together with reaction kinetics, reveal that the reaction occurs at the copper-ceria interfacial perimeter via a site cooperation mechanism: the Cu + site chemically adsorbs CO while the neighboring-Ov-Ce 3+ site dissociatively activates H2O. Copper nanoparticles, dispersed on ceria, constitute a highly efficient catalyst system for reactions in syngas (a mixture of H2, CO, and CO2) chemistry, such as the low-temperature water-gas shift (WGS) reaction 1-7 and CO/CO2 hydrogenation yielding methanol 8-13. In these technologically highly relevant Cu/CeO2 catalysts, copper is commonly viewed as the active component, while the ceria support, with a prominent redox behavior, tunes the dispersion and chemical state of the copper nanoparticles via strong metal-support interactions 14-16. In the case of the low-temperature WGS, a crucial reaction for regulating the H2/CO/CO2 proportions in feed gases for the downstream industrial applications, the active sites have been presumably proposed to locate at the copper-ceria interface. This hypothesis is based on intensive experimental studies on both real Cu/CeO2 catalysts 2-6 and model CeO2/Cu systems 17,18 as well as theoretical simulations of copper-ceria interactions 19-23. A direct experimental verification of the geometric and electronic structures of the copper-ceria interface at atomic scale, however, together with a quantitative description of the active sites for the activation of CO and H2O molecules during the low-temperature WGS reaction on the Cu/CeO2 catalysts, has not yet been obtained.