We report an experimental study of a Cooper pair splitter based on ballistic graphene multiterminal junctions. In a two transverse junction geometry, namely the superconductor-graphene-superconductor and the normal metal-graphene-normal metal, we observe clear signatures of Cooper pair splitting in the local as well as nonlocal electronic transport measurements. Our experimental data can be very well described by our beam splitter model. These results open up possibilities to design new entangled state detection experiments using ballistic Cooper pair splitters.