Glucocorticoids regulate a remarkable variety of essential functions, including development, immunomodulation, maintenance of circadian rhythm and the response to stress. Glucocorticoids acutely increase energy availability; this is accomplished not only by mobilizing energy stores, but also by diverting energy away from anabolic processes in tissues such as skeletal muscle and bone. While this metabolic shift is advantageous in the short term, prolonged glucocorticoid exposure frequently results in central obesity, insulin resistance, hyperglycaemia, dyslipidaemia, muscle wasting and osteoporosis. Understanding how glucocorticoids affect nutrient partitioning is therefore critical for preventing the side effects of glucocorticoid treatment. Independently of circulating glucocorticoids, intracellular glucocorticoid activity is regulated by the 11β-hydroxysteroid dehydrogenases 1 and 2 (11β-HSD1 and 2), which activate and inactivate glucocorticoids, respectively. Excessive 11β-HSD1 activity, amplifying local glucocorticoid activity in tissues such as adipose tissue and bone may contribute to visceral obesity, insulin resistance and aging-related bone loss in humans. Several recent findings in animals have considerably expanded our understanding of how glucocorticoids exert their dysmetabolic effects. In mice, disrupting glucocorticoid signalling in either adipose tissue or bone produces marked effects on energy homeostasis. Glucocorticoids have also been shown to influence brown adipose tissue thermogenesis (acute activation, chronic suppression), in both rodents and humans. Lastly, recent studies in mice have demonstrated that many dysmetabolic effects of glucocorticoids are sexually dimorphic, although corresponding results in humans are lacking. Together, these studies have illuminated the mechanisms by which glucocorticoids exert their metabolic effects; and have guided us towards more targeted future treatments for metabolic diseases.