Haplomethods are key biotechnological tools that make it possible to rapidly produce perfectly homozygous lines, speeding up plant breeding programs. Under specific stress conditions, microspores are reprogrammed toward sporophytic pathways, leading to embryo formation.Various endogenous and exogenous factors affect embryo yield in androgenesis, so the improvement of androgenesis efficiency requires the development of early, reliable and robust reactivity markers. During the last decade, numerous cytological, cellular and biochemical approaches were carried out to finely characterize microspore development and fate during androgenesis. However, the different available markers are often species-dependent, and their development and application are time-consuming and cumbersome. In this study, we show the suitable use of impedance flow cytometry (IFC) to develop new robust, reliable and strong markers of androgenesis reactivity in wheat, leading to: (i) routine monitoring of the viability of heterogeneous cell cultures; (ii) quick and simple evaluation of stress treatment efficiency; and (iii) early prediction of embryo yields from microspore suspensions. IFC can therefore provide the fine characterization of all of the microspore developmental pathways that occur in a cell suspension, for embryogenic microspores as well as pollen-like microspores. IFC technology has become a very useful tool to track and characterize wheat microspores in androgenesis, but can also be adapted to other species and other in vitro cell culture systems.