2019 IEEE Global Communications Conference (GLOBECOM) 2019
DOI: 10.1109/globecom38437.2019.9013483
|View full text |Cite
|
Sign up to set email alerts
|

Android Malware Detection Scheme Based on Level of SSL Server Certificate

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2021
2021
2022
2022

Publication Types

Select...
1
1
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 11 publications
0
2
0
1
Order By: Relevance
“…They also employed Naïve Bayes (NB) in the performance result comparison. Nevertheless, other studies focused on TLS handshake server messages, especially certificate features (Kato et al, 2019;Torroledo et al, 2018). Kato et al (2019) conducted a study on android TLS malware detection, achieving Random Forest (RF) accuracy of 93.90 percent by merging the TLS certificate features of the new scheme with the old scheme and simple DP-based scheme (SDPBS).…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…They also employed Naïve Bayes (NB) in the performance result comparison. Nevertheless, other studies focused on TLS handshake server messages, especially certificate features (Kato et al, 2019;Torroledo et al, 2018). Kato et al (2019) conducted a study on android TLS malware detection, achieving Random Forest (RF) accuracy of 93.90 percent by merging the TLS certificate features of the new scheme with the old scheme and simple DP-based scheme (SDPBS).…”
Section: Related Workmentioning
confidence: 99%
“…Nevertheless, other studies focused on TLS handshake server messages, especially certificate features (Kato et al, 2019;Torroledo et al, 2018). Kato et al (2019) conducted a study on android TLS malware detection, achieving Random Forest (RF) accuracy of 93.90 percent by merging the TLS certificate features of the new scheme with the old scheme and simple DP-based scheme (SDPBS). As demonstrated, TLS features are essential in the detection; therefore, they are utilized with other features in this paper's approach, TLSMalDetect.…”
Section: Related Workmentioning
confidence: 99%
“…Os modelos híbridos para detecção de malware propostos até o momento utilizam, em sua maioria, como dados dinâmicos chamadas de sistema e informações do uso de hardware dispositivo [Zachariah et al 2017]. Além disso, também existem propostas de trabalhos que utilizam o tráfego de rede [Kato et al 2020] ou chamada de Intents [Alzaylaee et al 2020], que exige instrumentação para coleta dos dados, para detectar tipos específicos de ataques. Dessa forma, este trabalho propõe uma nova abordagem para detecção de malwares no Android baseada em um modelo híbrido que combina dados referentes à comunicação entre processos realizadas pelos aplicativos analisados e informações estáticas dos mesmos.…”
Section: Introductionunclassified