2018
DOI: 10.1177/0954410018791621
|View full text |Cite
|
Sign up to set email alerts
|

ANFIS-Delta method for aerodynamic parameter estimation using flight data

Abstract: In this paper, aerodynamic parameters have been estimated using neuro-fuzzy-based novel approach (ANFIS-Delta). ANFIS-Delta is an extension of a feed-forward neural network based Delta method. This method augments the philosophies of an adaptive neuro-fuzzy inference system (ANFIS) in the Delta method. The current work studies the comparison of ANFIS-Delta estimated results with the existing methods using the flight data gathered on the Hansa-3 research aircraft at IIT Kanpur and also, demonstrates the efficac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
11
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
9
1

Relationship

1
9

Authors

Journals

citations
Cited by 23 publications
(14 citation statements)
references
References 22 publications
0
11
0
1
Order By: Relevance
“…Uçakların aerodinamik modellenmesi ve parametrelerinin tahmini üzerine yapılan bir çalışmada ise ANFIS-tabanlı parçacık sürü optimizasyon algoritması kullanılmıştır [13]. Diğer bir çalışmada da uçuş verileri kullanılarak ANFIS-DELTA yöntemiyle aerodinamik parametrelerin tahmini yapılmıştır [14]. Konar ve Bağiş' ın yaptığı çalışmada ise uçuş kontrol sisteminin hız parametresinin ANFIS ile belirlenmesi üzerinde durulmuştur [15].…”
Section: Introductionunclassified
“…Uçakların aerodinamik modellenmesi ve parametrelerinin tahmini üzerine yapılan bir çalışmada ise ANFIS-tabanlı parçacık sürü optimizasyon algoritması kullanılmıştır [13]. Diğer bir çalışmada da uçuş verileri kullanılarak ANFIS-DELTA yöntemiyle aerodinamik parametrelerin tahmini yapılmıştır [14]. Konar ve Bağiş' ın yaptığı çalışmada ise uçuş kontrol sisteminin hız parametresinin ANFIS ile belirlenmesi üzerinde durulmuştur [15].…”
Section: Introductionunclassified
“…A non-linear least-square-based optimisation methodology was also investigated in the field of parameter estimation, (18) and the parameters of a flight manoeuvre at a high angle-of-attack regime were computed (19,20) . Variants of FFNN such as radial basis function neural network (RBFNN), recurrent neural network (RNN) and adaptive neuro-fuzzy inference system (ANFIS) were also applied in the non-linear mapping of the aerodynamic forces and moments to estimate the aerodynamic stability and control derivatives (21)(22)(23)(24) . It is evident from the investigation carried out using the conventional FFNN and its variants mentioned above that the training of FFNN is a cumbersome task due to the number of epochs, slow convergence of learning strategies and trapping of the error function in local minima.…”
Section: Introductionmentioning
confidence: 99%
“…Some of the methods which are an integral part of this community are neural-network, fuzzy-logic, neuro-fuzzy, and genetic algorithm based methods. The methods, which are part of the community of data-driven methods, do experience the challenge of training the network and supplemental complexity during the genesis of logic [15][16][17][18][19][20][21][22][23][24][25][26][27].…”
Section: Introductionmentioning
confidence: 99%