Maintenance Management 2020
DOI: 10.5772/intechopen.82827
|View full text |Cite
|
Sign up to set email alerts
|

ANFIS to Quantify Maintenance Cost of IT Services in Telecommunication Company

Abstract: The maintenance cost predication of information technology (IT) regarding their important role and well-time availability in organization is valuable for IT managers. Therefore their decision originated from the predication might be great effect on organizational budgeting, planning, and strategy management. In this regard, having enough knowledge of IT system behavior and their cost forecasting may help IT managers to develop their organization. In this chapter, adaptive neuro-fuzzy inference system (ANFIS) w… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 20 publications
0
1
0
Order By: Relevance
“…In the near past, ANFIS (Adaptive Neural Fuzzy Inference System) models have become very popular for two reasons: the first reason is that in calibrating of non-linear relationships they offer more advantages over conventional modeling techniques, namely the ability to handle large amounts of noisy data from dynamic and non-linear systems, particularly when the underlying physical relationships are not fully understood. The second reason is that they facilitate the solving of linear systems which include the interpolation modeling such as time series [5].…”
Section: Introductionmentioning
confidence: 99%
“…In the near past, ANFIS (Adaptive Neural Fuzzy Inference System) models have become very popular for two reasons: the first reason is that in calibrating of non-linear relationships they offer more advantages over conventional modeling techniques, namely the ability to handle large amounts of noisy data from dynamic and non-linear systems, particularly when the underlying physical relationships are not fully understood. The second reason is that they facilitate the solving of linear systems which include the interpolation modeling such as time series [5].…”
Section: Introductionmentioning
confidence: 99%