The traditional approach to fuzzy design is based on knowledge acquired by expert operators formulated into rules. However, operators may not be able to translate their knowledge and experience into a fuzzy logic controller. In addition, most adaptive fuzzy controllers present difficulties in determining appropriate fuzzy rules and appropriate membership functions. This chapter presents adaptive neural-fuzzy controller equipped with compensatory fuzzy control in order to adjust membership functions, and as well to optimize the adaptive reasoning by using a compensatory learning algorithm. An analysis of stability and transparency based on a passivity framework is carried out. The resulting controllers are implemented on a two degree of freedom robotic system. The simulation results obtained show a fairly high accuracy in terms of position and velocity tracking, what highlights the effectiveness of the proposed controllers.