The deleterious effect of vasculature damage on the outcome of spinal cord injury has long been recognized, and numerous clinical studies have shown that the presence of hemorrhage into the spinal cord is directly associated with a poorer neurological outcome. Vascular damage leads to decreased blood flow to the cord and the release of potentially toxic blood-borne components. Here we consider the mechanisms that may be contributing to hemorrhage-induced damage and discuss the utility of a new model of spinal cord hemorrhage, which was urgently required as most of our current understanding has been extrapolated from intracerebral hemorrhage studies.