Purpose of Review In recent years, a vast body of evidence has accumulated indicating the role of the immune system in the regulation of blood pressure and modulation of hypertensive pathology. Numerous cells of the immune system, both innate and adaptive immunity, have been indicated to play an important role in the development and maintenance of hypertension. The purpose of this review was to summarize the role of adaptive immunity in experimental models of hypertension (genetic, saltsensitive, and Angiotensin (Ang) II induced) and in human studies. In particular, the role of T and B cells is discussed. Recent Findings In response to hypertensive stimuli such as Ang II and high salt, T cells become pro-inflammatory and they infiltrate the brain, blood vessel adventitia and periadventitial fat, heart, and the kidney. Pro-inflammatory T cell-derived cytokines such as IFN-γ and TNF-α (from CD8+ and CD4+Th1) and IL-17A (from the γδ-T cell and CD4+Th17) exacerbate hypertensive responses mediating both endothelial dysfunction and cardiac, renal, and neurodegenerative injury. The modulation of adaptive immune activation in hypertension has been attributed to target organ oxidative stress that leads to the generation of neoantigens, including isolevuglandin-modified proteins. The role of adaptive immunity is sex-specific with much more pronounced mechanisms in males than that in females. Hypertension is also associated with B cell activation and production of autoantibodies (anti-Hsp70, anti-Hsp65, anti-Hsp60, anti-AT1R, anti-α1AR, and anti-β1AR). The hypertensive responses can be inhibited by T regulatory lymphocytes (Tregs) and their anti-inflammatory IL-10. Summary Adaptive immunity and its interface with innate mechanisms may represent valuable targets in the modulation of blood pressure, as well as hypertension-related residual risk.