Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient sitecentered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number Lmax = (l, m)max, while scattering matrices, which determine spectral properties, are truncated at Ltr = (l, m)tr where phase shifts δ l>l tr are negligible. Historically, Lmax is set equal to Ltr, which is correct for large enough Lmax but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for Lmax > Ltr with δ l>l tr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically efficient and accurate augmented -KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R 3 process with rank N (ltr + 1) 2 ] and includes higher-L contributions via linear algebra [R 2 process with rank N (lmax + 1) 2 ]. Augmented-KKR approach yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe and L10 CoPt, and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus Lmax for a given Ltr.