Multistatic forward-looking synthetic aperture radar (Mu-FLSAR) has the potential of high-resolution imaging with short synthetic aperture time, which can improve the transmitter’s survivability, by coherently fusing simultaneously observed measurements of multiple receivers. However, the combined performance of the multiple measurements strictly depends on an appropriate geometric configuration among the transmitter and receivers because the forward-looking application limits the flight directions of receivers. In this paper, to design a geometric configuration for Mu-FLSAR, a wavenumber spectrum formation (WSF) approach is proposed based on the projection relationship between the wavenumber support regions (WSRs) and geometric configuration parameters. On the one hand, the projected pattern of multiple WSRs is deduced, and the relationship between multiple WSRs and the point spread function (PSF) is analyzed. Based on the geometric feature of the kernel WSR, which is formed by the transmitter and the master receiver, and the relationship between the geometric features and the geometric configuration parameters, including synthetic aperture time and azimuthal angle, a WSF method is proposed to visually and quickly deduce the geometric parameter of the salve receivers. On the other hand, based on the designed geometric configuration of Mu-FLSAR, a wavenumber-dependent fast polar format algorithm (WF-PFA) is proposed to efficiently reconstruct the targets relying on the geometric features of WSRs. Simulation results verify the proposed method.