Conditioned stimuli are important for nicotine dependence and may trigger craving and relapse after prolonged nicotine abstinence. However, little is known about the pharmacology of this process. Among the systems that have been shown to play a role in drugseeking behavior is the endocannabinoid transmission. Therefore, the present study examined the resistance to extinction of drugseeking behavior elicited by nicotine-associated environmental stimuli and the effects of the selective CB 1 cannabinoid antagonist rimonabant (SR141716) on the reinforcing effects of nicotine-related stimuli. Rats were trained to self-administer nicotine (0.03 mg/kg/ injection, i.v.) under conditions in which responding was reinforced jointly by response-contingent nicotine injections and stimuli (light and tone). After self-administration acquisition, nicotine was withdrawn and lever pressing was only reinforced by contingent presentation of the audiovisual stimuli. Under such a condition, responding persisted for 3 months, following which nonpresentation of the cues produced a progressive extinction of responding. As expected, rats trained to lever-press for saline injections paired with the audiovisual stimuli did not acquire the self-administration. These findings indicate that the cues required learned association with nicotine to acquire reinforcing properties and to function as conditioned reinforcers. When administered 1 month following nicotine withdrawal, rimonabant (1 mg/kg, i.p.) decreased conditioned behavior. These results showing the persistence of a nicotine-conditioned behavior are congruent with the role of nicotine-related environmental stimuli in nicotine craving in abstinent smokers. Rimonabant, which has been shown previously to reduce nicotine self-administration, may be effective not only as an aid for smoking cessation but also in the maintenance of abstinence.