BackgroundThe mechanism of leukocyte transendothelial migration (TEM) across the highly restrictive blood-brain barrier (BBB) remains enigmatic, with paracellular TEM thought to require leukocytes to somehow navigate the obstructive endothelial tight junctions (TJs). Transient interactions between TJ proteins on the respective leukocyte and endothelial surfaces have been proposed as one mechanism for TEM. Given the expanding role of extracellular vesicles (EVs) in intercellular communication, we investigated whether EVs derived from brain microvascular endothelial cells (BMEC) of the BBB may play a role in transferring a major TJ protein, claudin-5 (CLN-5), to leukocytes as a possible basis for such a mechanism during neuroinflammation.MethodsHigh-resolution 3D confocal imaging was used to highlight CLN-5 immunoreactivity in the central nervous system (CNS) and on leukocytes of mice with the neuroinflammatory condition experimental autoimmune encephalomyelitis (EAE). Both Western blotting of circulating leukocytes from wild-type mice and fluorescence imaging of leukocyte-associated eGFP-CLN-5 in the blood and CNS of endothelial-targeted, Tie-2-eGFP-CLN-5 transgenic mice were used to confirm the presence of CLN-5 protein on these cells. EVs were isolated from TNF-α-stimulated BMEC cultures and blood plasma of Tie-2-eGFP-CLN-5 mice with EAE and evaluated for CLN-5 protein by Western blotting and fluorescence-activated cell sorting (FACS), respectively. Confocal imaging and FACS were used to detect binding of endothelial-derived EVs from these two sources to leukocytes in vitro. Serial electron microscopy (serial EM) and 3D contour-based surface reconstruction were employed to view EV-like structures at the leukocyte:BBB interface in situ in inflamed CNS microvessels.ResultsA subpopulation of leukocytes immunoreactive for CLN-5 on their surface was seen to infiltrate the CNS of mice with EAE and reside in close apposition to inflamed vessels. Confocal imaging of immunostained samples and Western blotting established the presence of CLN-5+ leukocytes in blood as well, implying these cells are present prior to TEM. Moreover, imaging of inflamed CNS vessels and the associated perivascular cell infiltrates from Tie-2-eGFP-CLN-5 mice with EAE revealed leukocytes bearing the eGFP label, further supporting the hypothesis CLN-5 is transferred from endothelial cells to circulating leukocytes in vivo. Western blotting of BMEC-derived EVs, corresponding in size to both exosomes and microvesicles, and FACS analysis of plasma-derived EVs from Tie-2-eGFP-CLN-5 mice with EAE validated expression of CLN-5 by EVs of endothelial origin. Confocal imaging and FACS further revealed both PKH-67-labeled EVs from cultured BMECs and eGFP-CLN-5+ EVs from plasma of Tie-2-eGFP-CLN-5 mice with EAE can bind to leukocytes. Lastly, serial EM and 3D contour-based surface reconstruction revealed a close association of EV-like structures between the marginating leukocytes and BMECs in situ during EAE.ConclusionsDuring neuroinflammation, CLN-5+ leukoc...