Prevalence of depression is higher in patients with cancer than in the general population. Sustained systemic inflammation has been associated with depressive behavior and it has been reported that depressed patients commonly display alterations in their immune system. We previously showed that cancer in mice induces a systemic environment that promotes neutrophil activation and leukocytosis. We thus hypothesized that the peripheral systemic response to a solid tumor leads to endothelial activation, which may promote inflammatory changes in the brain with behavioral consequences. Using the Lewis lung carcinoma (LLC) model, we show that tumor growth induces a progressive increase in peripheral inflammation as observed by elevated interleukin-6 (IL-6). In behavioral studies, tumor-bearing mice showed no sign of motor, coordination or short term working memory deficits as assessed by rotarod, balance-beam, and novel object recognition tests. However, there was an impairment in the grip strength test and interestingly, an anxious and despair-like phenotype in the elevated plus-maze, and tail suspension tests, respectively. Immunostaining of perfused brains revealed fibrin accumulation in the vasculature with some leakage into the parenchyma, a process known to activate endothelial cells. Taken together, our results suggest that the inflamed and prothrombotic systemic environment created by the growth of a peripherally-located solid tumor induces endothelial activation, accumulation of fibrin in the brain and astrocyte activation, perhaps leading to depressive-like behavior.