This study presents two experiments addressing the representation of scientific data, in particular airflows, with a user-centered design approach. Our objective is to provide users feedback to data visualization designers to help them choose an air flow representation that is understandable and attractive for non-experts. The first study focuses on static markers allowing to visualize an airflow, with information characterizing the direction and the intensity. In a second study, carried out in an immersive virtual environment, two information were added, the temporal evolution and the concentration of pollutants in the air. To measure comprehension and attractiveness, participants were asked to answer items on Likert scales (experiment 1) and to answer User Experience Questionnaire (experiment 2). The results revealed that arrows seem to be a very common and understandable form to represent orientation and direction of flow, but that they should be improved to be more attractive by making them brighter and more transparent, as the representation could occlude the scene, especially in virtual reality. To solve this problem, we suggest giving the users the ability to define the specific area where they want to see the air flow, using a cross-sectional view. Vector fields and streamlines could therefore be applied in a virtual reality context.