Anionic Doping in Layered Transition Metal Chalcogenides for Robust Lithium‐Sulfur Batteries
Chen Huang,
Jing Yu,
Chao Yue Zhang
et al.
Abstract:Lithium‐sulfur batteries (LSBs) are among the most promising next‐generation energy storage technologies. However, a slow Li‐S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic‐doped transition metal chalcogenide as an effective catalyst to accelerate the Li‐S reaction. Specifically, a tellurium‐doped, carbon‐supported bismuth selenide with Se vacancies (Te‐Bi2Se3‐x@C) is prepared and tested as a sulfur host in LSB cathode… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.