Organometallic lead bromide and iodide perovskite single crystals (PSCs) are potential candidates for terahertz applications. Herein, we performed terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.1–3.0 THz on different thicknesses of MAPbBr3 (0.3, 0.6, and 0.8 mm) and MAPbI3 (0.6, 0.8, 0.9, 1.3, and 2.3 mm). The measurements were carried out with respect to the position (along the focal area), azimuthal rotation of the PSCs, and incidence angles of the reference THz pulse on the PSCs’ surface. Based on the transmitted THz pulses from PSCs from the above measurements, we calculated the real and imaginary parts of the refractive index, dielectric constants, absorption coefficients, and dark conductivity. These optical parameters tend to increase with decreases in the PSCs’ thicknesses. The transmission spectra of the terahertz electric field indicate that the measured optical properties do not vary significantly with the position and orientation of PSCs. The real parts of the refractive index and dielectric constants are higher than the imaginary values for both PSCs. On the other hand, a slight blueshift in the optical phonon vibrations corresponding to Pb-Br/I-Pb and Pb-Br/I bonds is observed with an increase in thickness. Interestingly, the phonon vibrations do not vary with the incidence angle of the THz pulses on the same crystal’s surface. The optical parameters based on THz-TDS reveal that the PSCs satisfy the requirement for tunable THz devices which need suitable, sensitive, and stable absorption properties between 0.1 and 3 THz.