(2006) A laboratory study of the development of earth pressure behind integral bridge abutments. Geotechnique, 56 (8). pp. 561-571 Permanent WRAP URL: http://wrap.warwick.ac.uk/85236
Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. A conventional bridge abutment utilises bearings to support the bridge deck, and expansion joints to allow it to slide as temperature changes occur. But experience has shown that expansion joints often leak, leading to deterioration of underlying structural elements, and are expensive to maintain and replace. As a result integral abutments, which are fully fixed with respect to the bridge deck, are increasingly being recommended. However, there is uncertainty about the magnitude of the earth pressures that they should be required to support. Available evidence from model tests and from field instrumentation does not provide a basis upon which to predict either the circumstances under which thermal cycling will lead to significant increases in earth pressure, or the levels to which they might rise. This paper reports the result of laboratory tests on natural clay samples, on pluviated sand specimens, and on glass ballotini, all of which have been subjected to the stress paths and levels of cyclic straining that a typical integral bridge abutment might impose on its retained soil. The results show that whereas the natural clay and the glass ballotini showed no lateral stress accumulation, regardless of strain levels and stress excursions, the pluviated sand specimens experienced systematic increases in lateral stress for almost all cyclic strain levels, eventually reaching states of stress at, or close to, both active and passive. The underlying mechanisms of stress increase are explored, and it is concluded that particle shape is an important factor in determining the response of soil to this special type of loading.KEYWORDS: clays; laboratory tests; repeated loading; sands; stiffness; stress paths Un contrefort de pont conventionnel utilise des appuis pour soutenir le tablier de pont et des joints de dilatation pour donner à la structure une flexibilité de glissement en fonction des changements de température. Cependant l'expérience montre que ces joints sont souvent sujets aux fuites et provoquent une détérioration des éléments structurels sous-jacents. Ils sont ...