A DNA molecule is characterized by a stepwise oscillatory circuit where every base pair is a capacitor, every phosphate bridge is an inductance, and every deoxyribose is a charge router. The circuitry accounts for DNA conductivity through both short and long distances in good agreement with experimental evidence that has led to the identification of the so-called super-exchange and multiple-step hopping mechanisms. However, in contrast to the haphazard hopping and super-exchanging events, the circuitry is a well-defined charge transport mechanism reflecting the great reliability of the genetic substance in delivering electrons. Stepwise oscillatory charge transport through a nucleotide sequence that directly modulates the oscillation frequency may have significant biological implications.