We study in this paper nonlinear anisotropic problems with Robin boundary conditions. We prove, by using the technic of monotone operators in Banach spaces, the existence of a sequence of weak solutions of approximation problems associated with the anisotropic Robin boundary value problem. For the existence and uniqueness of entropy solutions, we prove that the sequence of weak solutions converges to a measurable function which is the entropy solution of the anisotropic Robin boundary value problem.