“…We set xk = w k n ρ p (Dw k n ) 1/p(z) ∈ W 1,p(z) 0(Ω), k ∈ N 0 . On(34) we act with w k n ∈ W 1,p(z) 0(Ω) and obtainρ p (Dw k n ) + ρ q (Dw k n ) = Ω g vn (z, w k−1 n )w k n dz ⇒ ρ p (Dx k ) − Ĉk + vn (z, w k−1 n ) (w k−1 n ) p(z)−1 xp(z)−1 k−1 xk dz, ⇒ ρ(D xk ) Ω g vn (z, w k−1 n ) (w k−1 n ) p(z)−1 xp(z)−1 k−1 xk dz + Ĉk for all k ∈ N.(37)From the proof of Lemma 4, we know that(38) 0 < C 11 xk C 12 for all k k 0 , some 0 < C 11 C 12 .…”