We present57 Fe-NMR measurements of the novel normal and superconducting-state characteristics of the iron-arsenide superconductor Ba 0:6 K 0:4 Fe 2 As 2 (T c ¼ 38 K). In the normal state, the measured Knight shift and nuclear spin-lattice relaxation rate (1=T 1 ) demonstrate the development of wave-number (q)-dependent spin fluctuations, except at q ¼ 0, which may originate from the nesting across the disconnected Fermi surfaces. In the superconducting state, the spin component in the 57 Fe-Knight shift decreases to almost zero at low temperatures, evidencing a spin-singlet superconducting state. The 57 Fe-1=T 1 results are totally consistent with a s AE -wave model with multiple full gaps in the strong coupling regime. We demonstrate that the respective 1=T 1 data for Ba 0:6 K 0:4 Fe 2 As 2 and LaFeAsO 0:7 , which seemingly follow a T 5 -and a T 3 -like behaviors below T c , are consistently explained in terms of this model only by changing the size of the superconducting gap. The recent discovery of superconductivity in the iron (Fe)-based oxypnictide LaFeAsO 1Àx F x at the superconducting (SC) transition temperature T c ¼ 26 K has provided a new route toward the realization of high-T c superconductivity.1) The mother material, LaFeAsO, exhibits a structural phase transition from tetragonal (P4=nmm) to orthorhombic (Cmma) form at T $ 155 K and then exhibits a striped antiferromagnetic (AFM) order with Q ¼ ð0; Þ or ð; 0Þ and T N $ 140 K.2) The calculated Fermi surfaces (FSs) for undoped LaFeAsO consist of two small electron cylinders around the tetragonal M point and two hole cylinders, plus a heavy 3D hole pocket, around the À point.3) Measurements of the nuclear spin-lattice relaxation rate (1=T 1 ) for the LaFeAsO system in the SC state revealed the lack of a coherence peak below T c and the presence of T 3 -like behavior, suggesting an unconventional SC nature. [4][5][6]