This paper provides a characterization of expansive matrices $$A \in \textrm{GL}(d, {\mathbb {R}})$$
A
∈
GL
(
d
,
R
)
generating the same anisotropic homogeneous Triebel–Lizorkin space $$\dot{\textbf{F}}^{\alpha }_{p,q}(A)$$
F
˙
p
,
q
α
(
A
)
for $$\alpha \in {\mathbb {R}}$$
α
∈
R
and $$p,q \in (0,\infty ]$$
p
,
q
∈
(
0
,
∞
]
. It is shown that $$\dot{\textbf{F}}^{\alpha }_{p,q}(A) = \dot{\textbf{F}}^{\alpha }_{p,q}(B)$$
F
˙
p
,
q
α
(
A
)
=
F
˙
p
,
q
α
(
B
)
if and only if the homogeneous quasi-norms $$\rho _A, \rho _B$$
ρ
A
,
ρ
B
associated to the matrices A, B are equivalent, except for the case $$\dot{\textbf{F}}^0_{p, 2} = L^p$$
F
˙
p
,
2
0
=
L
p
with $$p \in (1,\infty )$$
p
∈
(
1
,
∞
)
. The obtained results complement and extend the classification of anisotropic Hardy spaces $$H^p(A) = \dot{\textbf{F}}^{0}_{p,2}(A)$$
H
p
(
A
)
=
F
˙
p
,
2
0
(
A
)
, $$p \in (0,1]$$
p
∈
(
0
,
1
]
, in Bownik (Mem Am Math Soc 164(781):vi+122, 2003).