Thermal conductivity is one of the most interesting physical properties of carbon nanotubes. This quantity has been extensively explored experimentally and theoretically using different approaches like: molecular dynamics simulation, Boltzmann-Peierls phonon transport equation, modified wave-vector model etc. Results of these investigations are of great interest and show that carbon- based materials, graphene and nanotubes in particular, show high values of thermal conductivity. Thus, carbon nanotubes are a good candidate for the future applications as thermal interface materials. In this paper we present the results of thermal conductance s of a model of helically coiled carbon nanotubes (HCCNTs), obtained from phonon dispersion relations. Calculation of s of HCCNTs is based on the Landauer theory where phonon relaxation rate is obtained by simple Klemens-like model.