Background
Dysregulation of circulating lipids is a central element for the metabolic syndrome. However, it is not well established whether human subcutaneous adipose tissue is affected by or affect circulating lipids through epigenetic mechanisms. Hence, our aim was to investigate the association between circulating lipids and DNA methylation levels in human adipose tissue.
Methods
DNA methylation and gene expression were analyzed genome-wide in subcutaneous adipose tissue from two different cohorts, including 85 men and 93 women, respectively. Associations between DNA methylation and circulating levels of triglycerides, LDL, HDL and total cholesterol were analysed. Causal mediation analyses tested if adipose tissue DNA methylation mediates the effects of triglycerides on gene expression or insulin resistance.
Results
We found 115 novel associations between triglycerides and adipose tissue DNA methylation, e.g. in the promoter of RFS1, ARID2, and HOXA5 in the male cohort (p ≤ 1.1x10−7), and 63 associations e.g. within the gene body of PTPRN2 and COL6A3 in the female cohort. We further connected these findings to altered mRNA expression levels in adipose tissue (e.g. HOXA5, IL11 and FAM45B). Interestingly, there was no overlap between methylation sites associated with triglycerides in men and the sites found in women, which points towards sex-specific effects of triglycerides on the epigenome. Finally, a causal mediation analysis provided support for adipose tissue DNA methylation as a partial mediating factor between circulating triglycerides and insulin resistance.
Conclusions
This study identified novel epigenetic alterations in adipose tissue associated with circulating lipids. Identified epigenetic changes seem to mediate effects of triglycerides on insulin resistance.