Nowadays, electricity energy demands requested from down-stream sectors in a smart grid constantly increase. One way to meet those demands is use of home energy management systems (HEMS). By effectively scheduling major household appliances in response to demand response (DR) schemes, residents can save their electricity bills. In this paper, an advanced HEMS facilitated by a nonintrusive load monitoring (NILM) technique with an automated nondominated sorting genetic algorithm-II (NSGA-II)-based multiobjective in-home power scheduling mechanism is proposed. The NILM as an electricity audit is able to nonintrusively estimate power consumed by each of monitored major household appliances at a certain period of time. Data identified by the NILM are very useful for DR implementation. For DR implementation, the NSGA-II-based multiobjective in-home power scheduling mechanism autonomously and meta-heuristically schedules monitored and enrolled major household appliances without user intervention. It is based on an analysis of the NILM with historical data with past trends. The experimental results reported in this paper reveal that the proposed advanced HEMS with the NILM assessed in a real-house environment with uncertainties is workable and feasible.Index Terms-Data fusion, demand response (DR), energy management system, ensemble learning, nonintrusive load monitoring (NILM), power scheduling, smart grid, smart house.