Depending on the preparation and the applied materials, moulds and cores can be of high rigidity or can be flexible. Although, chemically bonded moulding materials have relatively good flexibility, their high temperature behaviour determines the dimensional accuracy, the stresses in the castings and can induce several casting defects, such as rattail, veining, etc. The phenomenon is based on two major effects: the thermal expansion of the unbonded foundry sands and the deformation of the sand mixtures. The main objective of the present work was to study the relationship between these two effects, and to improve the knowledge related to the thermo-mechanical interactions between the casting and the mould. Dilatometric analysis of unbonded sand samples were performed and compared to the results of hot distortion tests of moulding mixture specimens. The results showed, that the thermal expansion of foundry sand largely influences the hot distortion behaviour, but depending on the type of binder used.