Structural, optical and electrical properties of Ge implanted GaSe single crystal have been studied by means of X‐Ray Diffraction (XRD), temperature dependent conductivity and photoconductivity (PC) measurements for different annealing temperatures. It was observed that upon implanting GaSe with Ge and applying annealing process, the resistivity is reduced from 2.1 × 109 to 6.5 × 105 Ω‐cm. From the temperature dependent conductivities, the activation energies have been found to be 4, 34, and 314 meV for as‐grown, 36 and 472 meV for as‐implanted and 39 and 647 meV for implanted and annealed GaSe single crystals at 500°C. Calculated activation energies from the conductivity measurements indicated that the transport mechanisms are dominated by thermal excitation at different temperature intervals in the implanted and unimplanted samples. By measuring photoconductivity (PC) measurement as a function of temperature and illumination intensity, the relation between photocurrent (IPC) and illumination intensity (Φ) was studied and it was observed that the relation obeys the power law, IPC αΦn with n between 1 and 2, which is indication of behaving as a supralinear character and existing continuous distribution of localized states in the band gap. As a result of transmission measurements, it was observed that there is almost no considerable change in optical band gap of samples with increasing annealing temperatures for as‐grown GaSe; however, a slight shift of optical band gap toward higher energies for Ge‐implanted sample was observed with increasing annealing temperatures. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)