Annexin A1 (AnxA1) is recognized as an endogenous anti-inflammatory molecule. However, its effects on the adaptive immune response and, in particular, on T cells remain unclear. In this study, we investigated the actions of AnxA1 in three distinct models of T cell–mediated inflammation. In contact hypersensitivity, collagen-induced arthritis, and inflammation induced by OT-II TCR transgenic T cells responding to OVA, AnxA1 deficiency significantly increased Ag-induced T cell proliferation and the resultant level of inflammation. In the contact hypersensitivity model, this was associated with increased adhesion of CD4+ T cells, CD8+ T cells, and neutrophils in the dermal microvasculature, as well as increased T cell expression of RORγt and IL-17A. In collagen-induced arthritis, deficiency of endogenous AnxA1 increased susceptibility to arthritis and Ag-specific T cell activation. Deficiency of AnxA1 also increased OVA-induced cutaneous delayed-type hypersensitivity and IFN-γ and IL-17 release. Transfer experiments using CD4+ T cells from AnxA1−/− mice demonstrated that the absence of AnxA1 solely in T cells resulted in increased inflammatory responses in wild-type recipients. Similarly, experiments using AnxA1−/− OT-II CD4+ T cells demonstrated that the absence of AnxA1 in T cells was sufficient to induce increased Ag-specific CD4+ T cell proliferation in vivo, augment T cell production of IFN-γ, IL-17, TNF, and IL-6, and increase Akt, ERK, and p38 activation. Together, these findings indicate that T cell–expressed AnxA1 functions to attenuate T cell–driven inflammatory responses via T cell–intrinsic effects on intracellular signaling, proliferation, and Th1/Th17 cytokine release.