As people live longer, age-related diseases, like sarcopenia, will become a greater public health concern. We use the model organism C. elegans to better understand the molecular mechanisms behind muscle maintenance. Muscle function is dependent on having properly organized and functioning thick filaments, which are primarily composed of myosin. The myosin head requires the chaperone UNC-45 to initially fold it after translation and is likely used to re-fold back to functionality after thermal or chemical stress induced unfolding. We observe an early onset of sarcopeania when UNC-45 is perturbed during adulthood. We observe that during adult aging, there is a sequential decline of HSP-90, UNC-45, and then myosin. Myosin and UNC-45 protein decline are independent of steady state mRNA levels. Loss of UNC-45 is correlated with an increase in phosphorylation of the protein. By mass spectrometry, S111 was identified as being phosphorylated and this modification may affect binding to HSP-90. A longevity mutant with delayed onset of sarcopenia also shows a delay in the loss of HSP-90, UNC-45, and myosin. We also see a decrease in UNC-45 protein, but not transcript, in an hsp-90 loss of function mutant, suggesting a role for HSP-90 in stabilizing UNC-45. This leads us to propose the model that during aging, a loss of HSP-90 leads to UNC-45 being post translationally modified, such as phosphorylation, and degraded, which then leads to a loss of myosin, and thus muscle mass and function. A better understanding of how myosin and its chaperone proteins are regulated and affected by aging will lead to better preventative care and treatment of sarcopenia and, possibly, the age-related decline of heart muscle function.