Clusterin (CLU) is a secreted heterodimeric glycoprotein thatcan be produced almost ubiquitously in mammalians tissues.1Its gene expression is subjected to complex regulation and canchange enormously according to different stimuli.2 Cloned andidentified as the most potently induced gene in the regressingrat ventral prostate following androgen-ablation,3 CLU wasalmost simultaneously characterized and isolated by differentresearch groups working in widely divergent areas.2 CLU iscoded by a single copy gene, located on chromosome 8.4 Thegene codes for an initial precursor peptide glycosylated andcleaved into two a and b chains of 40 kDa each, held togetherby a unique five disulfide bond motif in the extracellular matureform.1 This secreted form of CLU has been suggested to act asa molecular chaperone following stress-induced injury,5clearing extracellular debris.6 However, it has been reportedthe existence of an inactive, cytoplasmic form of CLUproduced by alternative splicing that is converted by ionizingirradiation to a truncated mature nuclear isoform,7 which bindsthe Ku70/Ku80 complex in cell-free systems8 inhibiting cellgrowth and survival7 probably by a caspase-3-independentmechanism.9 Other alternative CLU isoforms, produced eitherby exon skipping10 or by post-translational modificationsactivated by apoptosis,11,12 were recently described. Thesedifferent isoforms of CLU have been suggested to beantiapoptotic6,13 or proapoptotic.7,10,12,14–16These controversial reports on the role of CLU might berelated to specific proteomic profiles that are produced bydifferent apoptotic stimuli (i.e. the general protein pattern ofCLU and the relative ratio between different CLU isoforms).This might explain why CLU has been involved in a plethora ofpathophysiological processes, including cell–cell and cell–matrix adhesion, cell differentiation, transformation, aging17,18and cancer,19 but its biological role still remains to be clearlyestablished. Reports suggesting that CLU may be a potentialtumor suppressor gene include the finding that CLU suppressesNF-kB activity and the metastatic phenotype ofneuroblastoma cells.20 We have previously reported that CLUoverexpression inhibits cell cycle progression of simian virus40(SV40)-immortalized human prostate PNT2 and PNT1Aepithelial cells.21To further assess the role of CLU in apoptotic processes wehave studied its expression pattern during the regulation ofcalcium homeostasis. Ca2þ is an important regulator ofapoptosis and cell survival.22,23,24 Both pathological increaseof Ca2þ concentration in the cytosol compartment byinophores25 and depletion of intracellular Ca2þ stores maytrigger apoptosis by disrupting intracellular architecture andallowing effectors to gain access to their substrates.24,26,27Activation of apoptotic endonucleases28 eliciting DNA cleavageand chromatin condensation has beenwell documented.29,30,31A tight buffering of intracellular Ca2þ is required for normalgrowth. In fact, apoptosis can be induced by Ca2þ mobilizationfrom intracellular pools,23,24,27 chelati...