Geographical and Sustainability Science at University of Iowa for their help during my study period. I would like to thank my family and friends for all their supports and love during the 6 years for my Ph.D. study. Last but not least, I want to give my best thanks to my husband. He gives me a lot of supports and encouragement throughout my study.Without his supports, I could not achieve to the destination of the journey. Thank you to all of you.iv ABSTRACT This dissertation explores three research topics related to automated spatiotemporal and semantic information extraction about hazard events from Web news reports and other social media. The dissertation makes a unique contribution of bridging geographic information science, geographic information retrieval, and natural language processing.Geographic information retrieval and natural language processing techniques are applied to extract spatiotemporal and semantic information automatically from Web documents, to retrieve information about patterns of hazard events that are not explicitly described in the texts. Chapters 2, 3 and 4 can be regarded as three standalone journal papers. The research topics covered by the three chapters are related to each other, and are presented in a sequential way. Chapter 2 begins with an investigation of methods for automatically extracting spatial and temporal information about hazards from Web news reports. A set of rules is developed to combine the spatial and temporal information contained in the reports based on how this information is presented in text in order to capture the dynamics of hazard events (e.g., changes in event locations, new events occurring) as they occur over space and time. Chapter 3 presents an approach for retrieving semantic information about hazard events using ontologies and semantic gazetteers. With this work, information on the different kinds of events (e.g., impact, response, or recovery events) can be extracted as well as information about hazard events at different levels of detail. Using the methods presented in Chapter 2 and 3, an approach for automatically extracting spatial, temporal, and semantic information from tweets is discussed in Chapter 4. Four different elements of tweets are used for assigning appropriate spatial and temporal information to hazard events in tweets. Since tweets represent shorter, but more current information about hazards and how they are impacting a local area, key information about hazards can be retrieved through extracted spatiotemporal and semantic information from tweets.