A greenhouse study was conducted to quantify the irrigation requirements of two rose (Rosa hybrida L.) cultivars, RADrazz and Belinda’s Dream, which are widely valued for their ease of maintenance in landscapes, grown at four constant volumetric substrate moisture contents (SMCs) of 10%, 20%, 30%, and 40%. In both cultivars, there were no differences in growth and physiological responses between 30% and 40% SMC. In ‘RADrazz’, shoot dry weight (DW) was reduced by 25% and 86%, root DW was reduced by 27% and 71%, and flower number was reduced by 27% and 86% at 20% and 10% SMC, respectively, compared with 30% SMC. Midday leaf water potential (ψ), photosynthesis (Pn), stomatal conductance (gS), and transpiration (E) were highest at 30% and 40% SMC and they were lowest at 10% SMC. In ‘Belinda’s Dream’, shoot DW was reduced by 30% and 87%, root DW was reduced by 35% and 81%, and flower number was reduced by 42% and 75% at 20% and 10% SMC, respectively, compared with 30% SMC. Midday ψ was least negative at 40% SMC, whereas it was most negative at 10% SMC. There were no significant differences in midday ψ between 20% and 30% SMC. Pn, gS, and E were highest at 30% and 40% SMC and lowest at 10% SMC. In summary, plants at 30% and 40% SMC maintained the highest shoot and root DW, flower number, midday ψ, Pn, gS, and E. Water applied at 30% and 20% SMC was reduced by 31% and 70% compared with 40% SMC with excellent performance at 30% SMC and acceptable growth and quality at 20% SMC. The 10% SMC led to significant growth reduction, poor quality, and 25% mortality.