Electrocatalytic systems utilizing carbon (Vulcan)-supported PtRh nanoparticles (PtRh/Vulcan) admixed with either molybdenum oxide or tungsten oxide were tested and compared during electrooxidation of ethanol. The systems' performance was diagnosed using electrochemical techniques such as voltammetry and chronoamperometry. The proposed electrocatalytic materials were also characterized with X-ray diffraction (XRD), transmission and scanning electron microscopies (TEM and SEM), as well as SEM-coupled energy dispersive X-ray spectroscopy (SEM-EDX). For both systems containing molybdenum and tungsten oxides, enhancements in catalytic activities (relative to the behavior observed at bare PtRh/Vulcan nanoparticles) were found during ethanol electrooxidation at room temperature (22°C). Further, it was from chronoamperometric current (density)-time responses that anodic electrocatalytic currents measured at 0.3 V (vs. RHE) were more than 20% higher in the case of the MoO 3 -containing PtRh/Vulcan system relative to that utilizing WO 3 . The diagnostic "CO-stripping" experiments were consistent with the view that addition of molybdenum oxide or tungsten oxide to PtRh/Vulcan tended to shift potential for the oxidation of inhibiting CO-adsorbate ca. 80 or 40 mV towards less negative values in comparison to the analogous but oxide-free system. The fact that carbon (Vulcan)-supported PtRu nanoparticles exhibited higher electrocatalytic reactivity observed phenomena may be attributed to specific interactions between noble metal centers and the oxides in addition to chemical reactivity of metal oxo groups in the vicinity of PtRh/ Vulcan at the electrocatalytic interface.