Here, an electrochemical detection approach (differential pulse voltammetry) was employed to develop a 2nitrophenol (2-NP) sensor probe using a glassy carbon electrode (GCE) coated by wet-chemically synthesized nanorods (NRs) of BaO. The prepared BaO NRs were characterized by field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) analysis. The peak currents by differential pulse voltammetric (DPV) analysis of 2-NP are plotted against the concentration to obtain the calibration curve of the 2-NP detection. It was found to be linear from 1.5 to 9.0 μM, defined as the dynamic range (LDR) for 2-NP detection in phosphate buffer solution. The sensor sensitivity was calculated from the slope of LDR by considering the active surface area of NRs coated on GCE (0.0316 cm 2 ) and found as 17.6 μAμM À 1 cm À 2 . The limit of detection (LOD) was calculated as 0.50 � 0.025 μM from the signal/noise (S/N) ratio of 3. Moreover, the sensor analytical parameters such as reproducibility, long-term performing ability (stability), response time and validity in real environmental samples were found acceptable and to give satisfactory results. The development of a nanomaterial-based electrochemical chemical sensor might be an effective approach to sensor technology to detect carcinogenic and hazardous toxins for environmental safety and healthcare fields in a broad scale.