An essentially non-invasive electrochemical methodology addressed to the authentication of archaeological lead is described. The method is based on the record of the voltammetric response of nanosamples from the archaeological artefact mechanically transferred to a graphite 'pencil' electrode in contact with aqueous buffers. Three diagnostic criteria for authentication are described based on the appearance of: (i) oxidative dissolution signals for trace metals like copper, arsenic, antimony and, often, tin and silver accompanying stripping peaks for lead, (ii) peak potential shifts for reduction peaks for patination products, and (iii) the presence of reduction peaks for PbO 2 . The method is applied to the authentication of an Iberian lead plate from the Tossal de Sant Miquel (Llíria, Spain) site using a series of genuine and false pieces from different provenances in the Valencian region (Spain).