Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Phenomenological work in the last few years has provided significant support to the idea that the vacuum energy density (VED) is a running quantity with the cosmological evolution and that this running helps to alleviate the cosmological tensions afflicting the $$\Lambda $$ Λ CDM. On the theoretical side, recent devoted studies have shown that the properly renormalized $$\rho _{\textrm{vac}}$$ ρ vac in QFT in FLRW spacetime adopts the ‘running vacuum model’ (RVM) form. While in three previous studies by two of us (CMP and JSP) such computations focused solely on scalar fields non-minimally coupled to gravity, in the present work we compute the spin-1/2 fermionic contributions and combine them both. The calculation is performed using a new version of the adiabatic renormalization procedure based on subtracting the UV divergences at an off-shell renormalization point M. The quantum scaling of $$\rho _{\textrm{vac}}$$ ρ vac with M turns into cosmic evolution with the Hubble rate, H. As a result the ‘cosmological constant’ $$\Lambda $$ Λ appears in our framework as the nearly sustained value of $$8\pi G(H)\rho _{\textrm{vac}}(H)$$ 8 π G ( H ) ρ vac ( H ) around (any) given epoch H, where G(H) is the gravitational coupling, which is also running, although very mildly (logarithmically). We find that the VED evolution at present reads $$\delta \rho _\textrm{vac}(H)\sim \nu _{\textrm{eff}}\, m_{\textrm{Pl}}^2 \left( H^2-H_0^2 \right) \ (|\nu _{\textrm{eff}}|\ll 1)$$ δ ρ vac ( H ) ∼ ν eff m Pl 2 H 2 - H 0 2 ( | ν eff | ≪ 1 ) . The coefficient $$\nu _{\textrm{eff}}$$ ν eff receives contributions from all the quantized fields, bosons and fermions, which we compute here for an arbitrary number of matter fields. Remarkably, there also exist higher powers $$\mathcal{O}(H^{6})$$ O ( H 6 ) which can trigger inflation in the early universe. Finally, the equation of state (EoS) of the vacuum receives also quantum corrections from bosons and fermion fields, shifting its value from − 1. The striking consequence is that the EoS of the quantum vacuum may nowadays effectively appears as quintessence.
Phenomenological work in the last few years has provided significant support to the idea that the vacuum energy density (VED) is a running quantity with the cosmological evolution and that this running helps to alleviate the cosmological tensions afflicting the $$\Lambda $$ Λ CDM. On the theoretical side, recent devoted studies have shown that the properly renormalized $$\rho _{\textrm{vac}}$$ ρ vac in QFT in FLRW spacetime adopts the ‘running vacuum model’ (RVM) form. While in three previous studies by two of us (CMP and JSP) such computations focused solely on scalar fields non-minimally coupled to gravity, in the present work we compute the spin-1/2 fermionic contributions and combine them both. The calculation is performed using a new version of the adiabatic renormalization procedure based on subtracting the UV divergences at an off-shell renormalization point M. The quantum scaling of $$\rho _{\textrm{vac}}$$ ρ vac with M turns into cosmic evolution with the Hubble rate, H. As a result the ‘cosmological constant’ $$\Lambda $$ Λ appears in our framework as the nearly sustained value of $$8\pi G(H)\rho _{\textrm{vac}}(H)$$ 8 π G ( H ) ρ vac ( H ) around (any) given epoch H, where G(H) is the gravitational coupling, which is also running, although very mildly (logarithmically). We find that the VED evolution at present reads $$\delta \rho _\textrm{vac}(H)\sim \nu _{\textrm{eff}}\, m_{\textrm{Pl}}^2 \left( H^2-H_0^2 \right) \ (|\nu _{\textrm{eff}}|\ll 1)$$ δ ρ vac ( H ) ∼ ν eff m Pl 2 H 2 - H 0 2 ( | ν eff | ≪ 1 ) . The coefficient $$\nu _{\textrm{eff}}$$ ν eff receives contributions from all the quantized fields, bosons and fermions, which we compute here for an arbitrary number of matter fields. Remarkably, there also exist higher powers $$\mathcal{O}(H^{6})$$ O ( H 6 ) which can trigger inflation in the early universe. Finally, the equation of state (EoS) of the vacuum receives also quantum corrections from bosons and fermion fields, shifting its value from − 1. The striking consequence is that the EoS of the quantum vacuum may nowadays effectively appears as quintessence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.