Abstract. The two-neutron transfer reaction gsn(180, 160)a'2sn has been measured for the isotopes A= 112, 116, 118, 120, 122 and 124 at bombarding energies of 57 and 60 MeV together with the elastic scattering. Angular distributions have been analysed for the transitions to the ground state and to the first excited 2 + state. The observed ground state transition is strongly enhanced. The theoretical DWBA analysis is performed with a finite range 2n-transfer form factor including recoil correction. The calculated cross section reproduces the observed systematic change over all isotopes. The absolute cross sections are normalized by a factor of 4.7 and 7.5, depending on the two different sets of 2n-wave functions used in the analysis. The results confirm the prediction of the pairing model that the transition strengths of a neutron pair between the ground states of even tin isotopes are the same.