We study the relaxation process in normal and anomalous diffusion regimes for systems described by a generalized Langevin equation (GLE). We demonstrate the existence of a very general correlation function which describes the relaxation phenomena. Such function is even; therefore, it cannot be an exponential or a stretched exponential. However, for a proper choice of the parameters, those functions can be reproduced within certain intervals with good precision. We also show the passage from the non-Markovian to the Markovian behaviour in the normal diffusion regime. For times longer than the relaxation time, the correlation function for anomalous diffusion becomes a power law for broadband noise.