We consider the implications of a phenomenological model self-energy for the charge transport properties of the metallic phase of the overdoped cuprate superconductors. The self-energy is the sum of two terms with characteristic dependencies on temperature, frequency, location on the Fermi surface, and doping. The first term is isotropic over the Fermi surface, independent of doping, and has the frequency and temperature dependence characteristic of a Fermi liquid. The second term is anisotropic over the Fermi surface (vanishing at the same points as the superconducting energy gap), strongly varies with doping (scaling roughly with Tc, the superconducting transition temperature), and has the frequency and temperature dependence characteristic of a marginal Fermi liquid. Previously it has been shown this self-energy can describe a range of experimental data including angle-dependent magnetoresistance (ADMR) and quasi-particle renormalisations determined from specific heat, quantum oscillations, and angle-resolved photo-emission spectroscopy (ARPES). Without introducing new parameters and neglecting vertex corrections we show that this model self-energy can give a quantitative description of the temperature and doping dependence of a range of reported transport properties of Tl2201 samples. These include the intra-layer resistivity, the frequency dependent optical conductivity, the intra-layer magnetoresistance, and the Hall coefficient. The temperature dependence of the latter two are particularly sensitive to the anisotropy of the scattering rate and to the shape of the Fermi surface. In contrast, the temperature dependence of the Hall angle is dominated by the Fermi liquid contribution to the self-energy that determines the scattering rate in the nodal regions of the Fermi surface.