The response of transverse (T)-tubules to exercise training in health and disease remains unclear. Therefore, we studied the effect of exercise training on the density and spacing of left ventricle cardiomyocyte T-tubules in normal and remodeled hearts that associate with detubulation, by confocal laser scanning microscopy. First, exercise training in normal rats increased cardiomyocyte volume by 16% (p<0.01), with preserved T-tubule density. Thus, the T-tubules adapted to the physiologic hypertrophy. Next, we studied T-tubules in a rat model of metabolic syndrome with pressure overload-induced concentric left ventricle hypertrophy, evidenced by 15% (p<0.01) increased cardiomyocyte size. These rats had only 85% (p<0.01) of the T-tubule density of control rats. Exercise training further increased cardiomyocyte volume by 8% (p<0.01); half to that in control rats, but the T-tubule density remained unchanged. Finally, post-myocardial infarction heart failure induced severe cardiac pathology, with a 70% (p<0.01) increased cardiomyocyte volume that included both eccentric and concentric hypertrophy and 55% (p<0.01) reduced T-tubule density. Exercise training reversed 50% (p<0.01) of the pathologic hypertrophy, whereas the T-tubule density increased by 40% (p<0.05) compared to sedentary heart failure, but remained at 60% of normal hearts (p<0.01). Physiologic hypertrophy associated with conserved Ttubule spacing (~1.8-1.9 μm), whereas in pathologic hypertrophy, T-tubules appeared disorganized without regular spacing. In conclusion, cardiomyocytes maintain the relative Ttubule density during physiologic hypertrophy and after mild concentric pathologic hypertrophy, whereas after severe pathologic remodeling with a substantial loss of T-tubules; exercise training reverses the remodeling and partly corrects the T-tubule density.