1982
DOI: 10.3367/ufnr.0136.198201c.0061
|View full text |Cite
|
Sign up to set email alerts
|

Anomalous magnetic structures and phase transitions in non-Heisenberg magnetic materials

Abstract: ВВЕДЕНИЕОбзор посвящен в основном изотропным магнетикам с локализован-ными магнитными моментами, обменное взаимодействие между которыми носит более сложный характер, чем в обычной модели Гейзенберга. Соот-ветственно, их магнитные свойства сильно отличаются от свойств гейзен-берговских магнетиков. Часто такие магнетики могут быть описаны моде-лями, в которых наряду с гейзенберговским билинейным обменом учиты-вается биквадратичный, трех-или четырехспиновый обмен. Однако в слу-чае проводящих негейзенберговских ма… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
6
0

Year Published

1987
1987
2019
2019

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 28 publications
(6 citation statements)
references
References 13 publications
0
6
0
Order By: Relevance
“…Finally, if the interaction Hamiltonian is SU(2) symmetric so that it contains the spin operators S i only, then the ferromagnetic state of spin-1 condensate is characterized by the following spectra of single-particle excitations [17,42]: ω (1) p = ε p − 2J(0)n + 2h, ω (2) p = ε p − n 0 (J(p) − J(0)) + h, ω (3) p = ε 2 p + 2ε p n 0 (U(p) + J(p))…”
Section: Ferromagnetic Ground State and Excitationsmentioning
confidence: 99%
See 1 more Smart Citation
“…Finally, if the interaction Hamiltonian is SU(2) symmetric so that it contains the spin operators S i only, then the ferromagnetic state of spin-1 condensate is characterized by the following spectra of single-particle excitations [17,42]: ω (1) p = ε p − 2J(0)n + 2h, ω (2) p = ε p − n 0 (J(p) − J(0)) + h, ω (3) p = ε 2 p + 2ε p n 0 (U(p) + J(p))…”
Section: Ferromagnetic Ground State and Excitationsmentioning
confidence: 99%
“…The interaction in high-spin (S > 1/2) crystalline systems has a more complicated character that goes beyond the usual Heisenberg model, while their phase diagram exhibits a more rich structure [3]. In particular, for spin-1 systems with bilinear and biquadratic exchange interactions, the exotic orderings, such as nematic [3][4][5][6] and semi-ordered [6] phases, may exist along with the traditional ferromagnetic and antiferromagnetic phases. Moreover, the non-Heisenberg structure of the spin-spin interaction affects even the traditional phases.…”
Section: Introductionmentioning
confidence: 99%
“…1,2 This is because in such magnets the quantum properties of individual spins in the effective magnetic field play a decisive role in the formation of the dynamic and thermodynamic properties. 1,2 This is because in such magnets the quantum properties of individual spins in the effective magnetic field play a decisive role in the formation of the dynamic and thermodynamic properties.…”
Section: Introductionmentioning
confidence: 99%
“…To end this section, we mention the case of a narrow-band metal or semiconductor with non-integer band filling (the "double exchange" situation) [56]. This case may be treated within the Hubbard and s-d exchange models with strong correlations.…”
Section: H E X C H ( V 1 V L ) --[G'"(100)12 (G -'I2 ( J I J Z )mentioning
confidence: 99%
“…The Hamiltonian (9.8) contains only bilinear terms in spin operators. The biquadratic exchange may be obtained in the fourth order of perturbation theory [51,56,661 .9) have the same sign and "ferromagnetic" in the opposite case.…”
Section: H E X C H ( V 1 V L ) --[G'"(100)12 (G -'I2 ( J I J Z )mentioning
confidence: 99%