Density-functional theory calculations including a semi-empirical dispersion correction (DFT-D) are employed to study the interaction of small guest molecules (CH 4 , CO, N 2 ) with the cation sites in the silicoaluminophosphate SAPO-34. Eight different cations from three different groups (alkali cations, alkaline earth cations, transition metals) are included in the study. For each case, the total interaction energy as well as the non-dispersive contribution to the interaction are analysed. Electron density difference plots are used to investigate the nature of this non-dispersive contribution in more detail. Despite a non-negligible contribution of polarisation interactions, the total interaction remains moderate in systems containing main group cations. In SAPOs exchanged with transition metals, orbital interactions between the cations and CO and N 2 lead to a very strong interaction, which makes these systems attractive as adsorbents for the selective adsorption of these species. A critical comparison with experimental heats of adsorption shows reasonable quantitative agreement for CO and N 2 , but a pronounced overestimation of the interaction strength for methane. While this does not affect the conclusions regarding the suitability of TM-exchanged SAPO-34 materials for gas separations, more elaborate computational approaches may be needed to improve the quantitative accuracy for this guest molecule.