2023
DOI: 10.5937/vojtehg71-46058
|View full text |Cite
|
Sign up to set email alerts
|

Anomaly network intrusion detection system based on NetFlow using machine/deep learning

Touati Adli,
Salem-Bilal Amokrane,
Boban Pavlović
et al.

Abstract: Introduction/purpose: Anomaly detection-based Network Intrusion Detection Systems (NIDSs) have emerged as a valuable tool, particularly in military fields, for protecting networks against cyberattacks, specifically focusing on Netflow data, to identify normal and abnormal patterns. This study investigates the effectiveness of anomaly-based machine learning (ML) and deep learning (DL) models in NIDSs using the publicly available NF-UQ-NIDS dataset, which utilizes Netflow data, with the aim of enhancing network … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?