In densely populated countries like Italy, cremation is promoted for the final disposition of the dead. However, many families still choose inhumation or entombment. In ordinary (traditional) tombs, bodies skeletonize slowly and partially, and often need a second disposal after the exhumation. The aim of this study was to experimentally test the functionality of a new type of tomb, defined as “aerated”. Aerated tombs feature an aerating system, absorbing materials and a purifying filter, which collectively maintain ventilation, process putrefactive fluids and gases and neutralize odors. In an experimental cemetery area with pristine soil, limbs of piglets were wrapped in cotton sheets and were either inhumed, placed in ordinary tombs or placed in aerated tombs. Following exhumation after planned time intervals (1, 3, 6, 9, 12, 18, 24 months), all samples were macro- and microscopically examined. The inhumed samples were completely skeletonized by 9 months after burial, and after 12 months showed initial bioerosion in bone Haversian canals. The traditionally entombed samples developed progressive adipocere formation, whereas the samples disposed in aerated tombs became mummified. Despite this outcome, aerated tombs represent a more energy-effective, environmentally-friendly and economical choice when compared to ordinary tombs. A mummified body is lighter and drier than a body entombed traditionally and, as such, it is easier to exhume and quicker to cremate. Overall, in the absence of alternative burials, aerated tombs are more suitable than ordinary tombs for the final disposition of the dead in cemeteries with limited space. The results of this experiment add to the knowledge of taphonomical processes in temperate climates and urban environments, potentially benefitting the forensic and medico-legal community.