“…⟹ (12): Let V be any σ 1 σ 2 -open subset of Y. By(11) and Lemma 11 (1), we have (τ 1 , τ 2 )α-Cl(F -(σ 1 σ 2 -Int(σ 1 σ 2 -Cl(V)))) ⊆ F -(σ 1 σ 2 -Cl(V)). (12) ⟹ (10): Let V be any σ 1 σ 2 -open subset of Y. By(12), we haveτ 1 , τ 2 α-Cl Fσ 1 σ 2 -Int σ 1 σ 2 -Cl(V) ⊆ Fσ 1 σ 2 -Cl(V) , (48)and henceτ 1 , τ 2 α-Cl F -(V) ( ) ⊆ τ 1 , τ 2 α -Cl Fσ 1 σ 2 -Int σ 1 σ 2 -Cl(V) ⊆ Fσ 1 σ 2 -Cl(V). For a multifunction F: (X, τ 1 , τ 2 ) ⟶ (Y, σ 1 , σ 2 ), the following properties are equivalent:(1) F is lower weakly (τ 1 , τ 2 )α-continuous (2) For each x ∈ X and each σ 1 σ 2 -open subset V of Y such that F(x) ∩ V ≠ ∅, there exists a (τ 1 , τ 2 )α-open subset U of X containing x such that U ⊆ F − (σ 1 σ 2 -Cl(V)) (3) F − (V) ⊆ τ 1 -Int(τ 2 -Cl(τ 1 τ 2 -Int(F − (σ 1 σ 2 -Cl(V))))) for every σ 1 σ 2 -open subset V of Y (4) τ 1 -Cl(τ 2 -Int(τ 1 τ 2 -Cl(F + (σ 1 σ 2 -Int(K))))) ⊆ F + (K) for every σ 1 σ 2 -closed subset K of Y (5) (τ 1 , τ 2 )α-Cl(F + (σ 1 σ 2 -Int(K))) ⊆ F + (K) for every σ 1 σ 2closed subset K of Y (6) (τ 1 , τ 2 )α-Cl(F + (σ 1 σ 2 -Int(σ 1 σ 2 -Cl(B)))) ⊆ F + (σ 1 σ 2 -Cl(B)) for every subset B of Y (7) F − (σ 1 σ 2 -Int(B)) ⊆ (τ 1 , τ 2 )α-Int(F − (σ 1 σ 2 -Cl(σ 1 σ 2 -Int(B)))) for every subset B of Y (8) F − (V) ⊆ (τ 1 , τ 2 )α-Int(F − (σ 1 σ 2 -Cl(V))) for every σ 1 σ 2open subset V of Y (9) (τ 1 , τ 2 )α-Cl(F + (σ 1 σ 2 -Int(K))) ⊆ F + (K) for every (σ 1 , σ 2 )r-closed subset K of Y (10) (τ 1 , τ 2 )α-Cl(F + (V)) ⊆ F + (σ 1 σ 2 -Cl(V)) for every σ 1 σ 2open subset V of Y (11) (τ 1 , τ 2 )α-Cl(F + (σ 1 σ 2 -Int((σ 1 , σ 2 )θ-Cl(B)))) ⊆ F + ((σ 1 , σ 2 )θ-Cl(B)) for every subset B of Y (12) (τ 1 , τ 2 )α-Cl(F + (σ 1 σ 2 -Int(σ 1 σ 2 -Cl(V)))) ⊆ F + (σ 1 σ 2 -Cl(V)) for every σ 1 σ 2 -open subset V of YProof.…”