Ans-Assist: Robust Human Fall Detection for Unconstraint Smartphone Positions using Modified Long Short-Term Memory Cell
Maria Seraphina Astriani*,
Yaya Heryadi,
Gede Putra Kusuma
et al.
Abstract:In many aging countries, where the population distribution has shifted to old ages, the need for automatic monitoring devices to help an elderly person when they fall is very crucial. Smartphone is one of the best candidate devices for detecting fall because accelerometer and gyroscope sensors embedded in it respond based on human movements. People usually carry their smartphone in any position and can make fall detection method difficult to detect when fall occurs. This research explored the model for unconst… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.